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1. INTRODUCTION
1.1 RELIABILITY GROWTH
) We are concerned with analyzing a particular model of reliability
growth. The "growth" occurs in the following way: a system has some
given value of a measure of reliability at the beginning of a length of time
(i.e., at the start of a test period), and at the end of this period the value
of this measure has changed -- hopefully, it will be improved.

This change may be caused by a number of factors. We shail be con-
cemed, however, with only those factors thatnare the result of a conscious
effort on the part of an interested observer (the "experimenter”) . This
effort is an attempt to improve or correct the system by some physical ma-
nipuiation (such as compcnent replacement or adjustment) or perhaps even
by possible design change. The model considered below is similar to many
discussed previously in the literature in that the corrections are attempted
only after system failures have been observed.

A comparison between the model considered here (and its implications)
with those contained in the literature is postponed until the final sections,
where the differences; in approach should become more apparent.

At this point we shall only mention the sort of information that should
be, in the least, the content of any analysis of reliability grcwth. This
content falls into two categories: infcrence #nd projection. In particular,
an analysis should be able to produce statemants {by necessity, probabil-
istic ones), on the basis of the model and the failure history to date,

related to:
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Inference: the present value of the reliability

Projection: the reliability at some future time, with or without con-

tinued applicatinn of the correction ("growth") process.
In order to make such statements, we shall first discuss two basic models
which allow only a single failure mode for both discretely and continuously
failing systems . This condition will be relaxed in adater;settion dealing
with systems having many failure modes. |

A final comment about the use of the word "system" . As used in this
paper, it shall mean simply a piece of equipment that has an assigned task
to perform. If it does not perform it, it is said to have "failed". The sys-
tem can be very simple, containing perhaps only one component. Or it can
be extremely complicated. The only characteristic we shall use to distin-
guish between those degrees of complexity is the number of different (iden-

tifiable) ways it can stop functioning: i.e., the rumber of failur: modes.

1.2 NOTATION

The following notation will be used in the description and analysis of
the model discussed above:

.Capital letters stand for events or states of nature.

.An underlined variable, e.g., X, is a random variable.

prob. {x € x £ x + AXx]
Ax

f (x) =p.d.f.of ther.v x = lim
X
= AX —o0

.8(x) = Dirac delta function* of x.

*Defined most conveniently as the limit: 6(x) = lim [h(x,€)] where
1 € —o0
€ 0O0s<sxc<ge

h(x,€) = { €

0 otherwise




.P(A|B) = prob. {event A given event B has occurred}.
.fx(iclA) = p.d.f. of x given A has occurred.

= lm prob. {x € x £ x + dx]A)

AX -0 Ax

.B(;iA)' = I xfx(xlA)dx = conditional expectation of x given A.

.V(§|A) = f [x - E(gll\)]2 fx(xlA)dx = conditional variance of x

given A.
.The letter H will be used to denote the event (state of nature) "histori-
cal experience": all the prior knowledge that is available conceming
the model, values of parameters of the model, etc. Probabilities and
p.d.f.'s conditioned only upon H are called "a priori", or “prior" .
.A vector is noted by an arrow over it, with the vector dimension being

indicated in parentheses, e.g., 1ln) = (t. .t ,t.,... tn) .

1772773

2. THE CONTINUOUS MODEL
2.1 DESCRIPTION

The system has a single failure mode, and the time between failures,

t, is a random variable (r.v.) with probability density function (p.d.f.)

ft(t)=re"rt 0SSt o,

The parameter r is commonly called the failure rate of the system {or,
more properly, of the particular mode of failure) . Since all relevant meas-
ures of reliability for an exponentially failing system can be obtained from

the failure rate, it will be sufficient to concentrate upon its characteristics
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only. The exponential function is not as restrictive as it may seem at first,
Although it is certainly a simplistic assumption to make about complex sys-
tems, it becomes more valid as the systems become more elementary and
serve to comprise the components of an even greater system. In addiiion,
a conceptually simple (but laborious) extension of all the results of this
paper is possible when it is postuc_ted that r is in fact a function of time
since last failure,
The system is, at any time, in one of two possible states (again, with
respect to a single failure mode):
U = Unrepaired State
R = Repaired State
The numerical value of the failure rate r depends upon which state the
system is in:
If the system is in the unrepaired state U, then r= \;
If the system is in the repaired state R, then r= g .
The numbers )\ and j, can be any non-negative values, and in fact
w -Iswftén zero. On the other hand, the value of , might nob bezera.
Thus, although the system is said to be "repaired”, it might still exhibit
failures, albeit the failure rate when repaired might be quite low.
By virtue of a test program, the system changes states in the following
restrictive way. After every failure, if the system is in U it 1) goes to R
with probability a (the "repair probability"); or 2) remains in U with prob-

ability (1-a). If the system is in R, it remains in R with probability one.
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Thus, there can be only one transiticn to state R; once the system is re-
paired, it remains so.

This repzir attempt happens instantaneously, after which the system
operates until the time of the next failure (this time being again a random
variable with failure rate depending upon whether the system has been put
into state R or has remained in state U) .

The model may be represented by a two-state Markov process, as
shown by the flow diagram of Figure 1. The times between the transitions
indicated in the diagram are the times between failures and, thus, are con-

trolled by the failure rate of whichever state the system is in:

(1-a) . 1

FIGURE 1

Flow diagram representation of growth model

U = Unrepaired state (fajlure-rate = 1)
R = Repaired state (failure rate = )
a = repair probability




Which state the system is in, i.e., whether or not it has yet beenre-
paired, is unknown to the observer, and he can draw conclusions as to
whether or not the system is repaired only by observing the basic data: the
successive failure times (or, equivalently, the times between failures) .

Finally, It is possible to allow for the system to start off in a repaired
state by assigning

P, = prob. (system is in R at the start of the test).
Except for one situation to be considered later, however, we shall always
éssume that P, = 0.

In the above model, it is easy to see that since the system ultimately*
will go to state R, if |, < A, the failure rate of the systen will eventually
decrease, and thus the reliability will grow. On the other hand, if (for
some unforeseen reason) ,, > A, it is possible to degrade the system re-

liability by such a test routine.

2.2 SOME BAYESIAN CONSIDERATIONS

If the numerical values of the parameters a, p and ), defined above,
are lznown, then, as will be shown ,A it becomes a straightforward problem to
make probabilistic statements about the failure rate r, at any time, on the
basis of any amount of failure information. This is essentially because the
value of r depends only upon the state of nature (U or R), and the transition

from U to R is the extremely simple process shown in Figure 1. If the values

*Asiongas a # 0.




of these paramete.s are unknown, however, then various methods must be
used in order to obtain estimates of them and then, in turn, to make state-
ments about r, This quest 1s, of course, within the purview of classical
statistics, and muchhas been written conceming the estimation of param-
eters of models similar to the one treated here and associated confidence
intervals (see for example [1]).

The classical approach is, in essence, to 1) define some estimator
(of r in this case), examine it for unbiasedness, efficiency, sufficiency,
etc.; and then to 2) define an interval, the end points of which are random
variables derived from the observed data, which will contain the true value
of the parameter with some pre-determined probability.

The approach we choose to take is a purely inferential one. We state
that before any experimentation is done the fa!lure rates associated with

states U and R are, respectively, the random variables ) and . (The

sampling process associated with them, if one finds it necessary to imagine
such, is the process of selecting a system tc test from a batch of systems,
the resultant picked system having associate: failure rates that are thus
random variables selected from the population consisting of all possible
systems to be tested.)

We shall also assume that the repair probability a is known. (An ob-
vious extension of the riodel results if a is also assumed to be a random

variable,)




The joint probability density function of the random variables )\ and B
before experimentation begins, must be given, and it is assumed that this is
in fact known. This (most iikely subjective) prior density function is defined

to be

£y, 0B,

After some experimentation and possible correction has gone cn and a
series of failure times _t'(n) = (t1 ,t2 s e ey tn) has been noted, then use of
the definition of conditional probability allows one to determine the

"posteriori" density function.

LACIE

Since the failure rate of the system at any time is a function of both ) and
po itis itself a random variable r, with its own conditional p.d.f.

The purpose of this study is to in fact determine this density function
for r, both at the outset of a test period and as a function of a given set
of subsequent failure times. In addition, we shall make statements con=-

cerning the density function, and its moments, for the failure rate r at any

given time in the future.

2.3 KNOWN A AND y: RELIABILITY PROJECTION

Let us first suppose that A and j are deterministic and their exact
numerical values are known. The failure rate r is still a random variable,
however, since it depends upon whether the state of nature is U or R, and

that is itself probabilistically determined. The p.d.f. for r is easily

determined.




With a total test time of 1, the p.d.f. for r is fr (r;7)
£rin) = 6(r-APU) + 5(c-4)PR ) &)

where

P(UT') = prob. {system is in U after total test time 1}

P(RT) = prob. {system is in R after total test time 7}
The delta function notation is used as a « >nvenient way to write a p.d.f.
for the (at this point) discrete random variable r.

Tn what follows we assume that the sysiem staris out in the unrepaired
state P, so that P, = 0. (The development can be easily extended when
P, # 0, and this will be done in a later section, where the start of the
corrective testing period, t =0, occurs after some previous amount of
testing.)

In order to calculate P(UT) =1 - P(RT) . we note that the event (UT)
can be decomposed into a union of the mutually exclusive events (U-r ‘Fi'\
where

(Fi) = event {the transition from U to R takes place on the ith failure}

so that

W) “&{‘UT B (2

Since the I-‘1 are mutually exclusive events, we have
@

P(U_) = 151P(UT'F‘) = 1§1P(UT|F1)P(F1) (3)

S et RSO




The number of the failure at which the transition from U to R takes place is

geometrically distributed with parameter a, so that
P(F,) = a(l - a)i_l . (4)

Furthermore, we see that

P(UT| Fi) prob. {system is in U at T given it goes toc R at lth failure}

proh. {less than i failures in time « while in U}

-1 o)
= z )\T e }\T (5)
g0 -

which all combine.to give

» i-1 i )
PU)=Z T -%}‘T-ﬂ—e Mo - ai? (6)

i=1l j=0

Changing the order of the summation gives

® ® i _ _
PU) = 5 Q1) At o gitl
T gm0 s=ga U
= ()\'r)j AT j -a\T
= Xz T—- e (1 - a) = e (7)
j=0 °°

This result can be verified by noting that the ra.e of transition from U to R
is a\, since

prob. {transition from U to Rin AT}

prob. {failure in AT|U} prob. {repair}

AATa

and, thus, the probability of no transition in time t is, from the Poisson

_10_




distribution, e-a)‘ T . The longer derivation is useful, however, in that it

indicates a technique to be used again below,
The above equations thus show that the p.d.f. of the failure rate r at
time 1t after start of testing is

fr(r;'r) = a(r-x)e-ah+ s(r-u) (1 - e-a“) (8)

Note that this expression reflects a probability statement made before

the process starts. In other words, we can interpret the quantities

E(riv) = f if (riv) = e M4, - - Cs
o *
-aAT
=p+ (A-ple (9)
and
V(r:v) = J:: (r - E(L;T)]zf!;(r;'r)
= (X - u)Ze-alT(l _ e-aM) (10)

to be the present projection of what the mean and variance of the failure rate
I will be at time 1t (in the future) after corrective testing.

These projections are useful in themselves as aids to reliability pre-
dictionn. That is, if we know the values of the unrepaired and repaired
failure rates and the value of the repair probability a, then equation (9)
gives an estimate* of what the reliability will be at some time T after
testing begins, and equation (10) (actually, the square root of V(r;7) ) gives

an indication of the preciseness of that estimate. The behavior of these

*
Optimal (1.e., cost-minimizing) for a quadratic loss function.

_11-
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quantities satisfy intuition: the expectation cf the failure rate starts off at
A and approaches |, . The variance starts at zero (we know r= X at t=0),
and returns to 2zero as t — e« (r will certainly be equal to |, by that time,

as long as a #0), with an interesting maximum occurring at T = .al_x c

2.4 KNOWN )\ AND j: RELIABILITY INFERENCE
All of the abcve analysis has been made under the consideration that
the test was yet to be done. The analysis is extended now to the situation
where testing has been going on for a time «+, and n failures have been
observed at times t_, t t =_t'(n) , where tn S 1< tn+

172" """ 'n 1

in notation we shall now let t = t(n), with the understanding that the vec-

. (For ease

tor is of dimension n.)

Again, assuming still that |, and \ are deterministic and known, we
would like to calculate the appropriate conditional p.d.f. for the failure
rate: f (r]t, 7). To do so we shall need to calculate P(RTIT) . This is
shown by éxtending equation (1) of the preceding section,

f_r_(r['t’; T) = 8-A)PWU_|T) + a(r-u)p(RTr{) (11)

We again make use of the events Pi to write

Z P(U_,F|T)
T i

PU_[T)
i=1

z PU_|F, ., T)P(E|T) (12)

-12..
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But now we see that

P(U.‘_IFi ' ?) prob. {the system is in U at t given it goes to R at
the i“h failure, and failu-es are observed at

tl’ t2' ...,tn and tns T< th}

0 if 1€n
t if i>n (13)

so that equation (12) becomes

PU_|T) = I PEF|T). (14)
i=n+l

Using Bayes' rule

_ R(T{F)PE)  B(T|F)a(-a)'™
P(F,|T) = - = — (15)
P(t) P(t)

Under the condiuon that i >n (i.e., for all terms in the sum in equation (14) ),

and in fact the ith fa‘lure is observed to lie between t, and t, + dti

i i
-at, -t -t) L Al -t ) =A(r-t)
= S 2 1'... n n-l1 n
P(t ,]Fi) re " “he ceo e e dt,dt,...dt (16)
n_-At.2
= )xe dt (17)

since the times between the first n failures, given that transition to R
occurs at some failure after the nth, are identically distributed exponential
r.v.'s with common parame er \. The last term in equation (17), e-)‘h_t“.) ,

is due to the fact that no failures are observed in the interval (tn, 7).

Combining this result with equatios (14) and (15) yields

_13_



P(U_|T)
T

® n =AT
e

-1 -
a(l-a)” dt

5 A
i=n+1

.

P(1)

Ve M -a) ™4t

P(t)

(18)

- We now turn our attention to calculating P(RTlT) :tn much the same fashion:

PR | 1)
T

Here we
PR IF,
so that

PR _|T)

= 151 PR_,F,|T)
(]

i

see that

1 if isn
) =

0 if isn

n —
= I P{F,|t)
=1

:.rﬂ-‘

= fl P(R_|F, ,t) P(F,| t)

=1 P(t)

— z P(T|F)a(1-a)' "}
n P(C|F)P() 2 i .

P(t)

(19)

(20)

(21)

By the same arguments that lead to equation (17) we find that, when isn

P(Tiri)

\é lxe

-p,(tn't
° ue

-t -x(tz-tl)

n+1 n
‘..e

-x(ti—ti_l)

ity -ty)
. he W e

) -u(r-t)
dtldt2 coe dtn

My g eTet)

Ae u e

dt

= 4y o

(22)




Using this in equation (9) gives

-at, o ulr-t) s
xie ip,n Le : a(l-a)i L4t
1

S

i

PR |T) = (23)

P(t)

In order to evaluate P(—t.) , the common denominator in equations’ (1B)
and (23), we finally note that since (RT) and (UT) are exhaustive and
mutually exclusive

PR_|'t) + PU_|t) =1

which, by use of equations (18) and (23) gives

P(U_|t)

1-PR |T)

n _-AT n
- A e (l’a) (24)

L{t:n,

where the function L(—t.; A, ) is defined to be

n o, o=at, o u(r-t) )
z xie iun 1e ! a(l-qa)1 1+ A

i=1

n

L(t:n, ) e Ma-a" ¢

P(t)/dt (25)
Combining all this with equation (11) gives, for the density function of the
failure rate r, having observed fa!lures at t1 ' t2’ 5006 tn during a test

period of length T:

no oM, u(Tet) i i
8(r-u) T Ve 1p,n Le Faq -a)1 Ly se-02"e M(l -a)"
)T = =l — (26)
= L(t;x,p)
- 15 -
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Equations (24), (25), and (26) are the only ones nezessary to make

inferential statements about the reliability at time r, given failures at

times t’l' tor ceen oy and given the values of A, ; and a.

for example, let us suppose that = 0 (a repaired system never

fails) . Since

E(LIT: T) = J‘ rf£(r|?; r)dr
0
we find that
“x{7-t )
At n
E(z|Ti ) = e (1-a) - ke 27
My -AT a _}‘(T-tn)
ae + (1-a)e —— + e
l1-a
and
. _. e-x(f-tn)
PU_|t) = 1-P(RT|t) = -t (28)
a n
— + e
1-a

In this case it becomes apparent that inferential statements can be made
with only the information consisting of the length of time since the last
failure (T-tn) . This, of course, is intuitively clear, since, if , =0, at

the time of the last failure the system couldn't possibly have been repaired.

2.5 UNKNOWN A AND u: RELIABILITY PROJECTION
We come now to the more interesting and practical situation: that
where the parameters A and p of the process are unknown at the start of

the testing. Inferential statements about the values of these will come in

-16_
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the next section. Here we will be concerned with only deriving predictive
statements analagous to those implied by equations (9) and (10) .

The basic technique used here is to simply consider A and W to be
random variables ) and B, with respective p.d.f.'s fL(A| H) and
f&(ulH) , or possibly. a joint p.d.f. fu(k u|H). These _é‘_pLigLi density
functions are, at least at the start of experimentation, most probably sub~-
jective ones. That is, they represent all information available, at the time,
relevant o the failure rates in question and expressed in terms of an appro-
priate deneity function* . If some quantitative information is available,
from previous tests, etc., then of course these density functions should be
conditioned not only upon the event H, but all other observed relevant data.

As a first step, we re-write equation (8) with the notation expanded to
emphasize the fact that A and p are, in that equation, deterministic and
have known values A and p , respectively. In other words,

fliraw) = £(in, A= Lp =)

so that

-a\T
)

fr(r:T,l,u) = 6(r->\)e-am+ 5(r-u) (1-e (29)

We now use the well-known fact that for any probability that is itself

conditioned so that it is a function of a realizationofar.v., i.e.,

*The best techniques for producing such subjective functions are, and will
probably always be, subject to a great deal of controversy. We side-step
these philosophical issues here. The interested reader is referred to the
copious literature on the sukject, for example [7].

_17-



P(A|§ =x), the uncecnditioned probability is simply the expectation of the
conditioned one, i.e.,

P(a) = J P(A|x = x) fx(x) dx * (30}

-®

Using this relation, we may write in place of equation (8)

[--]
£ inn) = fo jof_r_(r;m.u) £ H) drde

In all that follows we shall assume that )\ and p are independent,

for ease of notation, so that we may write

fM()\.u) = flm fﬂ(n) .

The discussion, however, can be easily extended to the case when they are
dependent variables. We shall, for convenience, also drop the conditioning
event H, since all statements that can be made are all eventually conditioned
upon prior experience.

Perforining the indicated integration, we find

fL(r;'r) j j -[6(r->\)e_a“+ 8(r-u) (l-e-ah)]f‘z‘_(k)fﬁ(w dx dy
0 O

[0+ 1 o) | (1-e72%T) £,(8) ag (31)
0

from which we may derive

Brin) = [e£(6)e™ Tae+ B [(1-e75T) g (5) de (32)
0o - 0 -

*For example, see Parzen[11] p. 336.

_18-




An expression for V(r;t) may also be derived, but the specific form is

complicated and does not provide any easy interpretation.

As an example of the use of equation (32), consider the case where,
again, , 1is known and is .a fact equal zero (or, equivalently, it is ar.v.
with p.d.f. fﬁ(u} = §{(u) ). Then E(r;r) becomes, from (32)

| ® -agr
Blin) = [ 81,(8)e™ > dg (33)
0
The behavior of this expected value of failure rate at a time T into the

future (under the corrective test program) can be explored by selecting an

appropriate form for the prior p.d.f. on A . For convenience, we select
for this prior density function the conjugate form”12}gamma distribution
o
"1‘%;) P g 0€A<o
f.(y) = : 34
_)‘( ) (34)
0

otherwise
which has the moments

. 2
E(A) = 8
v(d) = =

BZ

This distribution thus has enough freedom for the fittinig of a desired mean
and variance by appropriate selection of the constants o and B.

Putting equation (34) into (32) yields

_19_
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a

eey = B e+l _ @« a+l -
B = R e eeet 8 (5rar)
= E() (1+ gH7ler)

2.6 UNKNOWN )\ AND u: RELIABILITY INFERENCE

The problem of inferring the value of r after thé observation of a data
vec'tor t = t(n} is, of course, complicated by the fact that now ) and g
are also random variables: A complete solution must also make inferential
statements about the posterior distributions for these rates as well as for r.

These statements, via the appropriate posterior dehsity functions, may
be easily made, however, by the judicial use of equation (30) . For example,
we note that equation (24) now should be written

n_-Ar n

= o (1-a)
PU |T:a=2,p=y) = e _ll-a (35)
4 L(t;)\au) ’

The unconditional probability that the system is still in the unrepaired state

becomes, using Bayes' Rule twice, and all limiis of integration from 0 to » ,

P(U_I'T)

] jj P(.I‘JI“;A=R,E=U’)fm(7\,u|t)dkdu

L{t:x, ) f_)\;“(k:u) dA du

(U [tia=r,p=u
IIPUT[ A=A, p=y IIL(?;X,u)f&(l,u)dxdu

=IjP(UT,t|L=x.g=u)fig(x.u)dkdu

f j L(tir, ) £y W) A du
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_ J‘J" Ane-)\"-(l -a)nf}:&(l.ﬂ) d;\du

T (38
[ Ju@me 0w ana
In addition, P(R_|'t) may be obtained by noting that
= 1-PR |t) (37

Similarly, it may be shown that the appropriate posterior density func-

tions for the rates )\ and p are

P(T |2 = 1) (1)

£\t =
A T =
IP(t |A= ) £,00) dr
J L, 0 001,60 a
= = (38)
IBRIGTY A £, (1) £, () dh d
and
- L(tow 2) £,(0) £, () dA
RN I ik Nk (39
_[ IL(t;u A E O E ) dn d
where we have let fM(A ) = 5&()&) f&(p) for ease of notation.
Finally, the same sort of manipulation leads to
n ‘)\f _y “rlr-t)) - -
I z lie Irn 1e o a(l-a)i 1fl‘()\)d)\+rne r-r(l_d)n
£ Tim) = ==L (40)

f ju‘t’;x JH) f)l(k) fﬁm) dadp

Although these equations seem formidable, they are extremely useful
and valuable and provide all the information necessary for inferential state-

ments about the system reliability, given an observed set of failure times.
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In particular, knowledge of the expected values of the random variables
A, g and r, given T, gives the experimenter good estimates of the value
of

a) the failure rate before testing began: equation (38)

b) the eventual value of the failure rate after unlimited correctional

testing: equation (39)

c) the present value of the failure rate: equation (40)

Additionally, the probability P(RT|T) that the system has in fact been re-
pairec is given directly by equation (37).

As is common in all Bayesian inference schemes, the foregoing develcp-
me'nt is liable, with some justification, to the criticism that the results are
dependent upon the particular prior distributions used:; 'fl(k) and fJé (W) .
This is indeed so, but the real concem should be with the sensitivity of the
results to variations and/or extremes in the selection of prior functions. In
barticular, it is certainly possible to select the prior distributions with suf-
ficiently large variances, so that the result of the analysis becomes rela-
tively independent of the prior expectations.

On the other hand, if the failure rates in question are to any degree
known in advance, it seems unreasonable not to allow the analyst to make

use of his knowledge -- particularly for the making of projections.
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3. THE DISCRETE MODEL

3.1 MODEL DESCRIPTION

A model similar to the one discussed above is now developed for the
case where a system exhibits "discrete" failure behavior. That is, the sys~-
temiundergoes "trials", and at each trial the system cither succeeds or fails.
Wea assume that these trials are independent (the equivalent of the assump-
tion of exponential behavior for the continuous model) . A convenient and
appropriate measure of reliability of the system at any time is simply
p=1-q, where

probability {success on the next trial}'

fl

P

q probability {failure on the next trial}
In order to model a reliability growth effect, we again consider the sys-
tem to start in state U, from which it has probability a of making a transi-

tion to state R after every failure. We then define the probabilities

u probability {system fails on a trial given in state U}

v probability {system fails on a trial given in state R}

The analysis now proceeds exactly as in the preceding sections, and
requires only some obvious notational changes (to account for the discrete
character of the failure data) and additions.

Let:

X = [xl, X, ... X } = the observed data vector after n trials,

2

where xi = 0orl as the ith trial results in a failure or

success, respectively
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Y1=

ZzZ =

i

z X, i=1, 2, ...n) = the cumulative number of successes
k=1

up to and including the ith trial

n- y1 = the cumulative number of failures up to and including

the 1th trial

3.2 KNOWN u AND wv: RELL:BILITY PROJECTION

We first consider the case where the failure probabilities u and v are

deterministic and known. At the end of N trials, the system failure proba-

bility is the random variable g, with p.d.f. fg(q : N) given by

fg(q ;i N)

= §(q-u) P(UN) + 65(q-v) P(RN) (42)

in direct analogy with equation (1), where

P(UN)

PR,

The value of

PUy

probability {system is in U after N trials}

probability {system is in R after N trials}
P(UN) is readily calculated:
{probability {system not repaired afcer one trial]]N

[1 - probability {system is repaired after one trial}]N

[1- au]N

since all the N trials are in the U state, are independent, and a faiiure

(with probability u) is necessary before a repair (probability a) is made.

Equation (42) then becomes

fL(@iN) = 5(q-u) (1-aw)™ + e(@-v)[1 - (1-au)] (43)
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The expectation of the system failure probability at the end of N trials is
F(g: N), where

E(q; N)

1
J;qu(q:N)dq

u(l--au)N + v[1 - (l-au)N]

v+ -v(l-aw)y (44)

3.3 KNOWN u AND v: RELIABILITY INFERENCE

In order to make inferential statements about the random variable g
(and hence p) given some data has been observed, we proceed again in a
fashion sinilar to that used ir the anelysis of the continuous model. In
particular, we may write for the conditicnal p.d.f. of q, given the ob-

served failure data vector X :

—

(0] %) = 8(a-w) PU, | X) + 6(a-v) P(R | x) (45)

n!

By defining the event G1

(Gi) = event {the transition from state U to state R takes place
immediately after the gt failure}

we may first of all write

P(U_| %) = 1:;1 P(U_, G| X)
2 151 PU_|G, . x) P(G,| x) (46)
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The definition of G1 allows us to write

- 0 i< z
P(U_|G, %) =

1 i> 2
n

since zn is the total number of failures observed in the first n trials.

Thus, if i € z . the transition from U to R has taken place at or before

th t
the n - trial, and the system cannot be in state U at the n B trial .

Equation (46) can now be written

PU | X) = L P(G,| %) (47)
““n+l

and, using Bayes' Rule,

I P(x|G)P(G)
- 1=zn+1
P(Unlx) S

P(x)
The value of P(Gi) is determined from the underlying geometric process

with parameter a, so that

I P(X|G)all-a)!
i=2z
PU, | %) = —2H—— (48)
P(x)
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We now note that when the transition from U to R takes place at some trial

after the nth [i.e., for all terms in the summation in equation (48)], we
may write
1-x X, 1-x b4 1-x X
P(;IGI) = u l(l-u) 1u 2(l-u 2... u n(l-u) n
z Y
= u n(l-u) n

since all n trials take place while the system is in the U state. Com-

bining this result with equation (48) gives

C» z y

L u1-u "a(-a'?
i=2z
P(x)
2 y z
n n n
P(x)
The calculation of P(Rnl ;) is also accomplished by use of the ex-
haustive and exclusive character of the event (Gi) i=1,2, ...e .
- « -—
PR |x) = ZPR_.G|x)
i=1
< — —
= 151P(R“IG‘ X) P(G,] x) (50)

The value of P(Ran1 ,x_.) is determined by the same arguments that led to
equation (47):
1 i€z

PR |G, ,X) =; " (51)
n'"i
0 i» 2
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so that equation (50) becomes

2
n
PR |x) = 151 P(G,] x)

and, using Bayes' Rule and P(Gi) = a(l-a)i_1 .

N

G i-1
Z P(x |G,)a(1-a)

PR |X) = & | (52)

P(x)

where the summation is defined to be zero when zn =0,

Finally, we notethat when i < zn

1-x X, 1-x X 1-x X
P(x ,Gi) = [u 1(l-u) 1u 2(l-u) 2...u i(l-u) 1] X
1-x X 1-x X
[v 1+1(l-v) 1+1... v rl(l-v) n]
i-y y, n-i-y +y Y =Y
= i(l-u) iv n 1(1-v) n ‘i
z Y, 2 -2 Y -y
=ulgy i gy n (53)
s0O that
% 2 Y. 2 -2 Yy -y
Zu 1(l-u) ty 0 1(l-v) i ia(l-a)i-1
PR | x) = (54)

P(x)
Complete inferential statements about the faiure probability q, given the
observed data )—c., may now be readily made using the posterior p.d.f.

fg(q] ;c') . This has been obtained, essentially, since we now need to
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simply substitute the expressions for P(Unl x) ‘and P(Rn| ;) (from equa-
tions (49) and (54), respectively) into equation (45). Note that the common
term of P(;) in the denominators of equations (49) and (54) can be evaiu-
ated by means of

P(UN|x) + P(Rn|x) =1

3.4 UNKNOWN u AND v: RELIABILITY PROJECTION
When the failure probabilities u and v are unknown, we proceed as

in section 2.5 by treating these parameters as random variables u and v,

with joint p.d.f. fuv(u,v) fuv(u,v]H) . Again, we shall (for ease in
development) assume that u and v are independent, so that

fp_!(u V) = fg(u) f!(v)
Use of the technique illustrated by equation (30) gives the following

results. (Intermediate steps have been left out. The development parallels

that of section 2.5)

1.1 N %
f f{a(q-u)(l-au) + 8(@-v)[1-(1-au) " ]}f (u,v)dudv
0 0¢ =

fg(q:N )

N - N
(1-29)" £ @@ + £,(d jo [1-(1-a8) )1, (8) d (5)
The projected expectation of the failure probability at the end of N trials is
1
E(@'N) = f (@:N)d
(@N) joq L@N) da

1 1
= [ef0)0-20"de + B [ (1-0-201" g (01dr  (58)
0o = 0 =
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3.8 UNKNOWN u AND v: RELIABILITY INFERENCE

When a data vector X has been observed, and u and y are random
variables with prior p.d.f. fuv(u,v) , conditional density functions on u,
v and g can be derived in @ manner parallel to that used for theeontinuous
case in section 2.6.

To keep the expressions concise, we define the following terms:

= zn yn zn

P(UN X;u) = u (1-u) (1-a) (57)
%h z y, 2 -2 Y -y

PR Kju,v) = I u li-g v av ™ lag-att (58)
i=1 :

P(xju,v) = P(U_,X:u) + PR ,Xu,v) (59)

. 11
P(x) = L I P(x;u,vyf (u,v)dudv (60)
0 uv

The posterior density functions of interest then become (after intermediate
steps similar to those in section 2.6)

1

I P()_c.iu,v) fuv(u,v) dv
£ u]X) = = = (61)
= P(x)
1 —
~J‘P(x;u,v) fuv(u,v) du
£ (v]x) = : e (62)
- P(x)
1 —
| N ‘[0 P(Rn,)_c':u.q) fg(u) du + P(Un;ft,q)
'fg(QIX) = (63)

P(X)
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and the posterior probability that the system has been repaired is

1.1
_ '[0 .[0 P(Rn,x;u,v) fyl(u,v) dudv
PR | x) = — (69
P(x)

4. NUMERICAL EXAMPLES

4.1 CONTINUOUS MODEL

A numerical example is now presented to illustrate the use of the
results of the previous sections.

The first task is the assignment of appropriate prior probabilit- density
functions for the failure rates A (before repair) and u (after repairj. In
order to facilitate calculations it is convenient to assume that these random
variables are independent and have prior density functions of the Gamma

family, so that

o
&1
g a,-1 -8B\
A 1 1
fl(” I‘(al) A e {69
a
322 a2-1 -Bzu
fg(u) I"(az) M e (66)

Furthermore, we suppose that estimates are available for the moments
of u and v. A particular set of such estimates is
E(2) = 1 E(w = .5

a(d) =1 aln)

(67)

'5
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1
. where E(p) = J. A fA(A) d)\ = expected value of A
0

() = o2(2) g
V(x) = d) =
A= |

(A= E(L)]zfﬂ()\) d\ = variance o:f A
This set of estimates, in conjunttion with equations (65) and (66) give

@ = 1 a2 = ]

81 =1 Bz = 2
The repair probability is assumed known and to have value a = .25

These figures are selected not with a physical example in mind, but
with the inteation of displaying the underlying features of the model. Thus
we at this point have assumed the following.

. At the start of testing, the svstem has a constant failure fate A that.
is unknown, but is estimated to be about 1 (per unit time) . The precision
cf this estimate is indicated by a standard deviation of 1 (per un1£ time) .

. After every failure an attempt at repair is niade. This attempt has
f)robability a = .25 of sicceeding, i.e., putting the system in the "repaired”
state.

. When the system has been repaired, the failure rate decreases to a
constant value u which is unknown, but which (from experience or judicial
guessing) can be estimated to be .5 (per unit time) with a standard deviation
also of .5 (per unit time) .

We now proceed to make statements about: the failure rate after some

length of future test time (projection); updated estimates of A #nd 4 on
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the basis of faiiure data gathered during the experiment (inference); the sys=-
tem failure rate r after observation of failure data.
Projection:

Using the values given above, the p.d.f. for the failure rate r at some

time r after the start of the growth program is, from equation (31)

~2r
oy r(1+.257) .S5te
fL(rlT) = e + 1+ .251_ (68)
and so the expected value of the failure rate after time 1 is, from (32)
1 - 2 ST
D = (75 257) Y 0+.257 (69)

From this expression we see that the expected failure rate will drop
halfway between its unrepaired and repaired values after a length of approxi-
mately 1% 12 units.

Inference:

In order to make inferential statements about ), p and r, adata
vector is needed.

Suppose that failures are observed, after the start of testing, at times
1,2,3,4,6.2, 8.2, 10,2, so that n = number of failures =7 and

t=(1,2,3,4,6.2,8.2,10.2)

[This data vector was chosen to intentionally -- and crudely -- simulate a
"repair” at t = 4 and a decrease in failure rate from 1 to .5]
For any time «, equations (38), (39) and (40) give the p.d.f. for ),

B and r, respectively; equation (36) gives the probability that the system
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hgs been repaired at or before that time. In our numerical example, we can
examine these posterior density functions by finding their means and stand-
ard deviations . For the prior parameters and data vector given above, these
havg been cglculated ancd are shown in Table 1 for values of v from 0 to
10.2 by increments qu Ar= .2 time units.

Projection after Inference:

At this point it is possible to extend the development to describe the
following situation.

Suppose that prior parameters have been selected,as above, and the
inferential calculations carried out. At time 7= 10.2, éfter having seen
the 7 féilurés described by T , what can we say about the expt;:ctation of
'the failure rate at some time r’ after time 1= 10.2?

In order to answer this question we note that at tima 1= 10.2 we
have (see Table 1)

E(2)

= .917 E(w) = .543
o(d) = .522 olp) = .322 (70)
PR, |T) = .846

We are noQ faced with the situation described in the discussion fol-
lowing equation (1) . For we may consider the situation to be such that the
values of equation (70) describe our total knowledge about A and p up to
that point; i.e., they can serve to define a new "prior" density function,

; ¥ 4 s
with parameters @) Bl . o and 82 .

= M o
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Doing so, we find that

o '

@, = 1.75 @, 1.68
L (2] ! =

Bl 1.22 82 3.10

In addition, we now have the situation where the value of

p

o = Prob {system is in R at time 0}

P{Rlzl t} = .846
A simple argument leads to the modification of equation (8) for the case
when Py # 0:

£ (ri7) = a(r«ﬂu-po)e'ﬁ“ + 8w [1-(1-p Je **7] (71)

and, consequently, equation (31) becomes

-arT -agr

f(rin) = (1-pf, (r)e +f}i<r)j0[1—u-po)e Jf, (B)de (72)

Taking the expectation of equation (72), uc'~n the primed prior parameters,

we get

E(_x;l?;'r') expected value of failure rate time ' after 7=12,

—

given t
! ’
ol [ 8 e a, *
=(1-p0)?(9,+67,) +? l(lp)(g ‘+art’ )
1 1 2
- 543 + .485(.72 - .1361")

2.75

(1.92 + .25 ")




Sensitivity:

The model has not been fully evaluated with regard to the sensitivity of

results to values of the prior parameters, errors in estimation of a,

However, examples for various cases have been calculated.

etc.

Tables 3 through 6 show E(A), o()A), E(), ols), ‘P(RT) , E(r) and o(r)

all conditioned upon the data vector t= (1,2,3,4,6.2,8.2,10.2) and evalu-

ated at 7= 0 to 10.2 by increments of Ar= .2 time units.. These calcu-

iations contain the prior parameters as shown in Table 2.

Table | 1 81 % B, [E®) o) EW ok a

1 1 1 1 2 1 1 .5 .5 .25

3 4 4 4 8 1 .5 5 .25 .25

4 1 2 1 4 .5 .5 25 .25 .25

5 4 4 4 8 1 .5 S5 .25 .12

6 |4 4 4 8 1 .5 .5 .25 .50
TABLE 2

Prior Parameters Used in Calculations of Tables 3-6

4.2 DISCRETE MODEL

For the discrete model, numerical calculations become simplified when

the prior probability density functions for the failure probabilities u and v

are of the Beta family of p.d.f.'s, where

. _ I(g) -1, B-a-1
B(X.d.ﬁ) =5 r(a)r(s_a) X (1 X)
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The moments of this function are
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Unfortunately, even this usually "conjugate prior" form does not allow
a closed form solution of the projection problem, as exemplified in equations
(55) and (56) . This is not to say that specific projections cannot be made --
the associated numerical integrations are straightforward, but have not been

attempt?-:’ here.

The more interesting inferential problem may be easily evaluated, how-

ever, and is illustrated in Tables 8 through 12.

The data vector 1s assivmed to be

x = (0,1,0,1,0,1,0,1,1,1,0,1,1,1,0,1,1,1,0,3,1,1,0)
where a "0" represents a failure, a "1" represents a success . Again,
this "observed" data vector has been pre-selected to simuiate an overly

typical result that might appcar if u = .5 v = .25 and repair tock place

on the 7th tridl (the 4th failure) . Numerical results now simply require a

set of pricr pirameters and the determination of the first and second mo-

ments of equations (61), (62) and {63).
In the calculation of a number of cases for various values of prior

parameters, it bzcomes convenient to work with the success probabilities

1-u and 1-v, rather than u and v directly. Table 7 shows the selection

of vaiues of the prior parameters for 1-u and 1-v, and for the repair

probability a.

gt e i e

e AN *‘w




Table E(1-u) ag(1-u) E(1-v) o(1-v) a
8 ) .2887 .75 .3660 .25
9 ) .3536 .75 .3953 .25
10 .4 .2619 .6 .4 .25
11 5 .3536 .75 .3953 .125
12 5 .3536 .75 .3953 .S
TABLE 7

Prior Parameters Used in Calculation of Tables 8~12

5. MANY FAILURE MODES
5.1 NOTATIONAL EXTENSION

In order to treat the more realistic case of systems with multiple failure
modes, we introduce a simple extended model and notation, and then show
that this case is solved forrilly by a simple extension of previously ob-
tained solutions. The development will be only for the continuous model,
although a similar one for the discrete case can be directly obtained by
means of a parallel analysis.

We now assume that a system can exhibit a total of M independent
failure modes (characterized, by definition, by their distinguishability) .
We also assume that a repair of a mode is possible only at a repair attempt
made after an observed failure of that mode.

We then define, formode 1 {(i=1,2, ... M),
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failure rate when 1th mode is unrepaired

>
"

1% i = failure rate when 1th mode is repaired

probability of repairing the 1th mode given an attempt is made

The entire system will have an overall failure rate r, which, by virtue
of the exponential failure behavior of each component, is

M

r = T.. r
=
where
th
)‘1 i mode is unrepaired
r =
! M) 1 1th mode is repaired

This last expression serves to recall that, according ;to our previous analysis,
the failure rates are in themselves random variables.
If, then, the failure rate for each mode is a random variable r g with

known p.d.f. (ri) [and thus known moments], we have in particular for

i
the overall system

f
L

fL(r) = fr (rl) * (795)

(r,) * ...f (r
i ) 2

)
2 Iy M

- f

I
where the * indicates the convolution operation.

Because of the independence of the failure modes, and since the repair

of any one mode is independent of the state of the others, we see that each

of the tr (ri) of equation (75) is available from expressions such as (31)
s |

[for projection] or {40) [for inference]. In these expressions we must only
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replace the parameters (r, A\, u, a) by (ri, A

B, ai), and note that t

i’ 74

now represents the times of occurrences of 1th mode failures.

To make matters even simpler for practical purposes, we note that since

I=2Xr i and the are independent, we can immediately write for the

2

expectation and variances:

M
E() = I E(r,)
i=1
M
VD = X)) = i)
i=1

6. CONCLUSION
6.1 OTHER MODELS OF RELIABILITY GROWTH

Discussion of the literature on reliability growth models has been
inténtionally postponed to this final section in order to facilite;te compari-
son with this paper.

The sublect of reliability improvement by means of conscious efforts on
the part of designers, test engineers, customers, etc. has been of interest
from the beginnings of reliability analysis. The modelling of such growth
processes has followed, for the most part, 3 common procedure: formulae
are presented that are intended to represent the growth of reliability (or the
decrease in failure rate, etc.) as a function of time. These formulae con-
tain unknown parameters, and it becomes a statistical problem to find appro-

priate estimates (and confidence statements) for these parameters as a




function of cbserved failure data. Such methods are found, for example, in
refereﬁc.es [10], I(_3] , [15]) and_[8]. Sherman [14], for example, finds
Maximum Lil;elihood Estimates for the repair probability a and the unre-
paired failure probability u when it is assumed that the repaired faiiure
probability v is zero.

Another approach is to assume that little is known about the underlying
failure behavior of the system, and what amounts to "almost" non-parametric
analysis-is made upon eventual failure rates (or probabilities) . This is
summarized in [1].

Bayesian techniques have been used only recently. A non-parametric
Bayesian analysis of a failure probability, constrained to be only non-
increasing in time, may be modelled by the technique shown in Samuels [13].
Larson [9] has extended an earlier analysis [8] to produce Bayesian esti-
mates of parameters of a growth model, using prior distributions suggested
by Earnest [5]. Finally, Cozzolino [4] has presented a Bayesian approach
to a general class of growth models with regard to making minimum-cost |
decisions about length of tests and burn-in procedures.

All of the above analyses, however, start with a basic assumption:
that the reliability will grow (or, at least, will not decrease) in time, If
the techniques derived previously were to be used for a system that was
actually deteriorating (naturally, or because of well-intentioned intervention),

the results would be meaningless. In practice, unfortunately, there is often
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as well as one equally good at determining appropriate growth character-

i
‘ a need to have an inferential technique that would spot such deterioration,
! istics .

i

6.2 CONCLUSION

This paper has attempted to model a process tha: simply considers a
gsystem (with regard to each failure mode) to be in either a repaired or un~
repai;'ed state. The failure rates in each state are known to any desired

degree of confidence, and accumulation of failure data serves, in a natural

way, to update the knowledge of these state parameters. The observation
of fauﬁre dat; also determines the probability that the system is repaired
(with respe;:t to éach modé) .
The weékest points of the model seem to be the assumptions that
. The repair probability a is known
. Repair attempts occur only after the observation of a failure
The first point can be overcome (at the expense of additional com~-
plexity) by considering a to be a random variable a with appropriate
prior p.d.f. fa(a] H) . All analysis would then include a posterior infer-
ential p.d.f. for a, given a data vector.
The second point is unfortunately too much at the heart of the model.
For many realistic systems, the assumption seems to be valid, however,

as the tendency is not to "ruin a good thing".
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It should be pointed out that the model considered here is a specific
example of a process which Howard [ 6] calls "Dynamic Inference". This
general concept is quite useful in modelling a stochastic process in which
the underlying parameters are allowed to change according to yet another
stochastic nrocess . The interested reader is referred to reference [6],
where (as becomes apparent upon studying the Tables 2-6 and 8-12) the
statement is made, "The numerical results indicate a complexity of behavior

that challenges intuition" .
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